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Abstract — Although one senior security professional has 

emphasized that “it is unconscionable to use overly weak 

components” in a multilevel security (MLS) context, the majority 

of current transfer guards do exactly that. Basic guard 

technology is well-developed and has a long history, but most 

guards are built on low-assurance systems vulnerable to software 

subversion, and the lack of assurance limits the range of transfers. 

This paper describes a virtual guard architecture that leverages 

mature MLS technology previously certified and deployed across 

domains from TS/SCI to Unclassified. The architecture permits a 

single guard system to simultaneously and securely support many 

different transfer functions between many different domain pairs. 

Not only does this architecture substantially address software 

subversion, support adaptable information transfer policies, and 

have the potential to dramatically reduce (re)certification effort, 

the virtualized guard execution environment also promises to 

significantly enhance efficient and scalable use of resources. 

 
Index Terms— Assured pipeline, Downgrading, GEMSOS, 

Guard, High-assurance, Multilevel security, Sanitization, 

Virtualization 

 

I. INTRODUCTION 

he Committee on National Security Systems defines a 

“Cross Domain Service (CDS)” as “a form of controlled 

interface that provides the ability to manually and/or 

automatically access and/or transfer information between 

different security domains [1].” The Unified Cross Domain 

(CD) Management Office (UCDMO) has further categorized 

CD mechanisms as transfer, access, and multilevel. “A 

transfer device permits the movement of data from one 

domain to another. An access device allows a user to sit on 

one workstation and access multiple domains but not move 

data between them. A multilevel device stores and processes 

information of different security levels in a common 

repository, but only allows a user to view appropriate 

information based on his/her credentials [5].”  

In this paper, we are chiefly concerned with transfer 

devices. Transfer devices transfer from one domain 

information that is authorized for a second domain, ensuring 

that the authorized information and only the authorized 

information is transferred to the second domain. Examples of 

data transfer functions include the following: 

• Anti-virus scans on information transferred from a low 

domain to a high domain, to protect the integrity of the 

high domain. 

• “Dirty word” (specific content) searches on data being 

transferred from a high domain to a low domain, to 

prevent the leakage of sensitive data. 

• Creating “sanitized” data releasable to a low domain 

out of sensitive data in a high domain. For example, 

summary U.S. census data may be released soon after 

a census, but the raw data cannot legally be released to 

the public domain for 72 years [2]. 

(Note that the latter two types of policies often require human 

review before information can be downgraded to the low 

domain, due to the inability of a computer algorithm in many 

cases to reliably examine data and determine that it contains 

no sensitive information [3].) We refer in this paper to transfer 

devices that implement any of these types of policies as 

transfer “guards”. 

The UCDMO maintains a “Baseline List” of commercially- 

available CDSs that are available for deployment by U.S. 

Government agencies. This list, as of 27 January 2012, has 28 

entries, 19 of which are of the “Transfer” type [6]. Although 

offered by diverse vendors, a cursory examination of the 

transfer device products in the UCDMO Baseline List 

indicates that they likely share several weaknesses. In 

particular, most of these transfer guards are based on low-

assurance, commodity technology that is liable to introduce a 

high risk of information compromise due to software 

subversion. The low-assurance systems necessitate inflexible 

and highly constrained transfer policies, demand endlessly 

repetitive and tedious certification and recertification of 

uncertain effectiveness, and lead to a large amount of wasted 

and duplicative resources. 

The Aesec Virtual Guard (AVG) architecture introduced in 

this paper leverages many years of science and engineering 

experience with building highly secure systems [18]. These 

techniques were systematically codified in the U.S. National 

Security Agency’s “Trusted Computer System Evaluation 

Criteria” (TCSEC, also known as the “Orange Book”) [27]. 

Two important system composition techniques, Partitioned 

TCBs [23] and TCB Subsets [21], were later approved to help 

simplify the evaluation of complex systems, The potential to 
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apply these techniques was largely carried forward in the more 

recent “Common Criteria for Information Technology Security 

Evaluation” (CC) [28].  

Through the application of the science of knowing how to 

build high-assurance components and how to compose them, 

the AVG architecture avoids or improves on the serious 

limitations of current guard technology. 

II. LIMITATIONS OF CURRENT GUARD TECHNOLOGY 

The high-assurance AVG, built on a trusted computing base 

(TCB) that was evaluated at the highest level of the TCSEC, 

Class A1 (meeting CC EAL7 equivalent requirements), 

addresses each of the following weaknesses identified in 

current guard technology. 

A. Susceptibility to Software Subversion 

Guard implementations are commonly software applications 

hosted on an operating system and hardware platform. But the 

hosts typically are not high-assurance and, hence, are 

susceptible to software subversion. Addressing the threat of 

software subversion requires verifiable protection as 

systematically codified, for example, in the TCSEC’s Class 

A1, which is distinguished by “substantially dealing with the 

problems of subversion of security mechanism” [7], but the 

commodity platforms typically used for guards have few of the 

protection features of a true high-assurance system. 

A current, well-known guard example is the Information 

Support Server Environment (ISSE) [8]. Vendor literature for 

one recent (added to the Baseline List 2 April 2012 [9]) 

commercial instantiation of the ISSE says, “Guard software 

will execute on the Trusted Solaris multi-level, secure 

operating system” [10]. Trusted Solaris provides, at best, a 

very weak level of protection. In fact, it has been used as a 

specific example of an operating system that is “inadequate to 

counter any focused attack” [18]. 

Another transfer CDS in the UCDMO Baseline List runs on 

“commodity commercial off-the-shelf servers running Red Hat 

Enterprise Linux 5 with a Strict SELinux policy [11]”, and 

SELinux has also been proposed as a suitable base for guards 

by others [12][13], but the NSA says that “Security-enhanced 

Linux is only intended to demonstrate mandatory controls in a 

modern operating system like Linux and thus is very unlikely 

by itself to meet any interesting definition of secure system” 

[14]. A system is only as secure as its weakest link. A guard 

built on a low-assurance system has a foundation of sand.  

Proposed guards based on the separation kernel-based 

MILS architecture are a recent development [15][16]. MILS is 

intended to enable the creation of high-assurance systems by 

composing untrusted, commercial, off-the-shelf (COTS) 

components [17]. Separation kernel approaches, by definition, 

however, do not include a Reference Monitor, so the security 

policy enforcement mechanism is diffused throughout the 

system and development and certification of high-assurance 

systems is potentially difficult and risky. 

Current guard implementations are typically missing 

technology to provide high-assurance that only approved and 

authenticated software is distributed to each guard installation. 

Because the enforcement of a mandatory access control 

(MAC) policy is the responsibility of the underlying operating 

system TCB, the TCB must be responsible for trusted 

distribution, system integrity, and system recovery. The TCB 

needs to implement integrity-checking mechanisms on system 

software, detecting any tampering and preventing a damaged 

system from running. 

Additional constraints on guard operations and management 

arise from the lack of integrity features for application 

software, configuration information, and data. In summary, 

current guard technology fails to significantly mitigate the 

threat of supply-chain subversion of the trusted system and 

untrusted applications software. 

A determined and skilled adversary can easily embed 

complex subversions with little fear of detection and there is 

evidence that software subversion is the external threat with 

the highest potential payoff for determined adversaries, 

constituting the attack “of choice” [19]. (Recent events, such 

as the spread of Stuxnet and Flame malware, provide 

additional empirical support for this view [29].) As David Bell 

has written, since guards, intrinsically “are multilevel, it is 

unconscionable to use overly weak components. Such 

connections require high security, meaning A1 [18].” 

B. Rigid Constraints on Transfer Security Policies 

Implementations of the current guard technology have 

generally evolved in response to a particular class of 

environments with monolithic transfer security policies. Yet 

this approach neglects distinct, underlying policies, which tend 

to be lumped together in an ad hoc manner.  

For example, for the U. S. Government, the underlying 

executive order for protecting classified information can be 

directly modeled as a MAC policy for the TCB of the 

underlying platform. As codified in the Class A1 criteria, the 

TCB can employ installation-specific configuration 

adaptations for diverse contexts from the U.S. government to 

foreign partners to commercial enterprises. On top of this 

MAC policy, for a given set of security domains there may be 

a policy on cross domain transfers, for example a “dirty word 

search” or human review. Furthermore, on top of those two 

policies, a given installation may have further “safety” policy 

constraints on information that can flow between domains, 

e.g., requiring virus checking on data before it is transferred. 

Current guard technology does not employ a systematic, 

scientifically sound policy composition architecture that uses 

the proven techniques of Partitioned TCBs [23] and TCB 

Subsets [21] that have been available for several decades. 

Current guard technology also generally lacks the ability to 

limit the range of trust for a guard (e.g., TSABI versus SABI) 

in the underlying MAC TCB. The absence of this capability 

constrains deployment because there little assurance that the 

limited range of trust cannot be circumvented. 

C. Inflexible Certification and Accreditation Support 

Real-world requirements call for constant adaptation – new 



hardware, new software, new transfer criteria – against 

adversaries who are continually probing for vulnerabilities, but 

current guard technology does not have proven invariant 

protection properties and implementations are generally 

accredited for only one configuration. This means that guard 

implementations must be reevaluated for each variation, 

because introducing variations breaks the assumptions that 

formed the basis for deployment approval.  

D. Resource Intensive Replication 

Without a high-assurance platform, guards cannot 

themselves be sufficiently trusted to share their operating 

system and hardware platform with other guards. This means 

that there must be a different platform for each guard and 

domain. In a multi-domain environment, the lack of high-

assurance leads to the creation of guard server “farms”, using 

duplicative and isolated hardware and software.  

This wasteful duplication of resources is exacerbated by 

platforms with limited scalability for the complementary class 

of environments requiring high performance for data intensive 

transfers through the guard. A basic tool for scalability is 

multiprocessor support, where processing resources can be 

added for any deployment without impacting the underlying 

basis for security, but such scalable multiprocessing is a 

challenge that few high-assurance platforms have been able to 

meet. 

III. GEMSOS, A HIGH-ASSURANCE TCB 

The AVG is built on a high-assurance TCB - the COTS 

Gemini Secure Operating System (GEMSOS) [24]. The NSA 

has previously evaluated the GEMSOS security kernel and 

product Ratings Maintenance Phase (RAMP) plan at Class A1 

as part of the evaluation of the Gemini Trusted Network 

Processor (GTNP) [25], confirming that it meets the highest 

standards for security, protection against subversion, and 

certifiability. Because the AVG architecture depends on 

features of the underlying TCB, we briefly describe some of 

the key features of GEMSOS here. 

A. Access Control Policy 

GEMSOS is a real-time, multi-processing operating system 

that implements a mandatory access control policy based on 

the hierarchical lattice of security labels described in the Bell 

and LaPadula access control model [33]. Labels include both a 

secrecy component and an integrity component (viz., strict 

integrity based on the Biba interpretation of the Bell-LaPadula 

model [32]). Each of the secrecy and integrity components 

consists of a hierarchical level and a set of non-hierarchical 

categories [34]. 

All objects (storage segments, synchronization objects, and 

other types of protected resources) have permanent access 

labels that the system attaches to the objects when the objects 

are created. Subjects (effectively processes, for purposes of 

this discussion), have two access labels – a maximum read 

label and a minimum write label. When a subject attempts to 

access an object, the TCB compares the subject’s access labels 

to the object’s access label. A subject’s read label must 

dominate an object’s access label in order for the subject to be 

granted read access. An object’s access label must dominate 

the subject’s write label in order for the subject to be granted 

write access [25].  

Subjects whose read and write labels are equal are single-

level, untrusted subjects. Subjects whose read and write labels 

are not equal are multi-level and trusted within the range 

defined by their read and write labels. The Final Evaluation 

Report for the GTNP notes that, although the GTNP 

evaluation addressed only single-level application subjects, 

GEMSOS correctly “restricts multi-level subjects to operating 

within the defined range of the subject [25].” The AVG 

architecture depends on this multi-level subject feature of 

GEMSOS to create guards.  

Because the TCB is “the totality of protection mechanisms 

… responsible for enforcing a computer security policy [27],” 

trusted subjects that extend the security policy enforced by 

GEMSOS, such as transfer guards, must be evaluated as part 

of the TCB. Most typical operating system features, however, 

such as a file system [22], can be implemented with single-

level subjects. 

B. High-assurance features 

GEMSOS is “high-assurance” due to a high level of trust 

that the protection mechanisms of the system correctly enforce 

the security policy during all phases of the system lifecycle. 

This trust is engendered by eight factors: system architecture 

(using techniques such as hardware segmentation, layering, 

information hiding, and minimization), integrity testing, covert 

channel analysis, trusted recovery, security testing, formal 

design specification and verification, configuration 

management, and trusted distribution [25].  

In particular, the following Class A1 requirements satisfied 

by the GEMSOS TCB specifically address the threat of 

subversion [27]: 

• Strict configuration management and special 

safeguards must be used to protect master copies of all 

material, including tools, used to generate the TCB. 

(Helps avoid, for example, the famous “Thompson 

Trojan compiler” problem [4].) 

• Formal methods must be used to detect and analyze 

covert channels.  (Confines potential “Trojan 

Horses”.) 

• Design documents must include a clear description of 

internal TCB mechanisms that are not described in the 

Formal Top Level Specification (FTLS). 

• The Descriptive Top Level Specification (DTLS) and 

FTLS must include descriptions of hardware and 

firmware components (such as segmentation), if 

properties of those components are visible at the TCB 

interface, and a mapping of the FTLS to the actual 

source code must be performed. (Mitigates potential 

“Trap Doors”.) 

• Testing must demonstrate that the TCB implementation 

is consistent with the FTLS. Mapping of the FTLS to 



the source code can serve as the basis for precise 

penetration testing. 

The GEMSOS kernel runs on the Intel IA-32 architecture, 

which provides segmentation hardware with four privilege 

levels [20].  The kernel executes in the highest privilege level 

to protect it from tampering. GEMSOS leverages the 

remaining three hardware privilege levels to create eight 

classical protection rings and gates between them. The 

hardware segmentation mechanisms are foundational to 

enforcement of access controls. Rigorous software engineering 

principles (layering, in particular) and formal specification 

techniques used to develop the kernel, plus the kernel’s 

compact size, support Class A1-level testing and formal 

analysis to show the correspondence of the implemented code 

to the FTLS and security policy model [25]. The system 

firmware (BIOS) is part of the TCB and is also custom-built 

with attention to security-related software engineering. 

GEMSOS maintains system integrity beginning with secure 

configuration management and continuing with trusted 

distribution of the system hardware and software. Kernel 

software is distributed on encrypted and sealed volumes. The 

crypto-seals protect software from alteration during shipping, 

installation, and system operation. Similarly the custom 

GEMSOS BIOS is protected by a crypto-seal authenticator 

based on a checksum computed on the ROM contents [25]. 

At boot time, the system first executes diagnostic tests to 

verify the integrity and correct operation of the hardware and 

firmware. Secure booting continues by verifying the integrity 

of the boot volume and kernel modules using cryptographic 

checksums before transferring control to the kernel. The 

system shuts itself down if a problem is detected at any point. 

Special, off-line Trusted Recovery procedures must be 

followed before a system can resume operation. The 

cryptographic checksum feature can be used to protect any 

system, application, or data files from corruption or tampering. 

IV. AVG ARCHITECTURE 

The AVG architecture is implemented through GEMSOS-

provided process isolation, GEMSOS-supported multi-level 

subjects, and assured pipelines created using GEMSOS 

mandatory access class labels. Network clients communicate 

with the AVG through standard protocols such as Network 

File System (NFS) [35]. The processes that implement the 

communications protocols (equivalent to Unix “daemons”) are 

single-level processes outside the TCB. The AVG architecture 

is depicted in figure 1. 

A. Assured Pipelines 

An assured pipeline limits communication within a sequence 

of processes so that each process in the pipeline can only 

receive information from the previous process and send 

information to the next process [30]. Processes outside the 

pipeline cannot interfere with data in the pipeline. Assured 

pipelines have been a feature in other guard designs as well as 

the AVG, although on low-assurance operating systems 

[12][13]. 

Assured pipelines in the AVG are implemented using 

integrity categories [31], which are part of the integrity 

component of the mandatory security labels assigned to every 

subject and object managed by the TCB [24]. Each guard has a 

unique integrity category, called the guard identifier. The 

guard identifier protects the guard from outside processes 

because the lattice-based MAC policy enforced by GEMSOS 

requires that the write label of subjects contain an integrity 

category in order to be able to modify objects that have that 

same integrity category [34]. Only the processes in a guard, 

however, have the guard identifier integrity category assigned 

to that guard. Additional integrity categories are used to keep 

the pipelines of the guard ordered and separate. 

For example, in figure 1, the Input Queue Manager is 

trusted within a very specific integrity range so that it can read 

from the Input Message Queue, which has a secrecy level of 

“High” and an integrity category “ic1”, and write to the High 

Message Buffer, which has a secrecy level of “High” and two 

integrity categories: “ic1” and “ic2”. This is an example of an 

assured pipeline. Integrity category “ic1” is the guard 

identifier, while “ic2” is used to implement the assured 

pipeline, because only the Input Queue Manager has access 

labels that permit writing to the High Message Buffer. 

(Technically, the Trusted Guard Downgrade Function also has 

sufficient privilege to write to the High Message Buffer, 

although there is no functional reason for it to do so and, if it 

did, there are no security ramifications.) There is a second 

assured pipeline on the output side of the guard. 

The use of guard identifier integrity categories and assured 

pipelines means that there can be multiple guards with 

different ranges on the same host system. Even trusted 

processes that are part of different guards cannot interfere with 

one another. 

B. Trusted Subjects 

The AVG architecture uses the multi-level, trusted subject 

feature of GEMSOS in two ways: 

1. The process that performs the downgrade is trusted 

with respect to secrecy by the high source domain to 

maintain secrecy in the transfer to the low destination. 

For example, a sanitizer is “trusted” to remove 

sensitive information before putting data into the low 

destination domain. The range of trust of the 

downgrade process is explicitly limited by the 

GEMSOS-enforced labels assigned when the system is 

configured. 

2. Assured pipeline processes are trusted with respect to 

integrity to create higher integrity results. In strict Biba 

integrity, low-integrity data cannot flow to a higher-

integrity domain. Assured pipeline processes, however, 

read from a lower-integrity domain and write to a 

higher-integrity domain (viz., a domain with an 

additional integrity category), which protects the 

pipeline against modification. 

C. AVG Design 

The AVG implements a guard in three phases: input, 



release, and output. 

 

1) Guard Input 

In figure 1, a network client on the High network requests 

sanitized transfer of a message through the guard. In our initial 

prototype, this is implemented by copying a file containing the 

message from its local file system to the High Message Queue 

– a directory on the AVG system mounted by the client using 

the Network File System (NFS) protocol [35].  

The High Message Queue has a secrecy level of “High”, but 

also an integrity category “ic1”. The “ic1” integrity category is 

the guard identifier that is unique to this guard, and every 

subject and object in the guard has the same guard identifier. 

The actual transfer of the file from the client is 

accomplished by the single-level Input Message Handler 

process (which effectively serves as the NFS daemon for the 

High network). The Input Message Handler has the same 

access class (“High” secrecy and integrity category “ic1”) as 

the High Message Queue so it can write to the Queue. 

The Input Message Handler informs the Input Queue 

Manager that a message is in the Input Message Queue by 

incrementing an eventcount – a type of secure synchronization 

object implemented in GEMSOS [36]. The operation to 

increment an eventcount is called “advance”. The eventcount 

has the same access class as the Input Message Queue, so it 

can be read by the Input Queue Manager. Upon initialization, 

the Input Queue Manager reads the current eventcount value 

associated with the Input Message Queue and then blocks 

while it waits for the eventcount to be incremented. When the 

Input Message Handler increments the eventcount, the Input 

Queue Manager wakes up so it can process a message in the 

queue.  

The Input Queue Manager process transfers each message 

from the High Message Queue to a High Message Buffer that 

it shares with the Trusted Guard Downgrade Function process. 

The Input Queue Manager is an assured pipeline trusted within 

a very specific integrity range so that it can read from the High 

Message Queue, which has a secrecy level of “High” and 

integrity category: “ic1”, and write to the High Message 

Buffer, which has a secrecy level of “High” and integrity 

categories: “ic1” and “ic2”.  

 

2) Guard Release 

The Trusted Guard Downgrade Function process is trusted 

within a secrecy range “High” to “Low”. The installation and 

configuration of the guard creates this limited downgrade 

range, and the underlying TCB enforces it with high assurance, 

regardless of any attempts to exceed that range that might 

occur in the downgrade function. 

The Downgrade Function can read and process input 

messages from the High Message Buffer and write 

downgraded data to the Low Message Buffer, which has 

secrecy level “Low” and the same two integrity categories 

(“ic1” and “ic2”) as the High Message Buffer. The use of the 

two restricted integrity categories ensures that the Downgrade 

Function can only read from and write to the message buffers, 

but nowhere else. 

The Input Queue Manager informs the Trusted Guard 

Downgrade Function that a message is in the High Message 

Buffer by incrementing an eventcount associated with the 

buffer. The eventcount has the same access class as the High 

Message Buffer, so it can be read by the Trusted Guard 

Downgrade Function. When the Trusted Guard Downgrade 

Function has processed the message in the High Message 

Buffer, so that the buffer is ready to accept another message, it 

signals the Input Queue Manager using another eventcount. 

The Trusted Guard Downgrade Function performs 

sanitization processing on the message and writes the results to 
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the Low Message Buffer. It then signals the Output Queue 

Manager through an eventcount. The Low Message Buffer has 

a secrecy level of “Low” and, from this point on, all 

processing in the guard is done at the “Low” secrecy level. 

 

3) Guard Output 

The Output Queue Manager is an assured pipeline that can 

read from the Low Message Buffer, which has a secrecy level 

of “Low” and integrity categories: “ic1” and “ic2”, and write 

to the Low Message Queue, which has a secrecy level of 

“Low” and integrity categories: “ic1”, “ic2”, and “ic3”. 

The Output Queue Manager copies messages from the Low 

Message Buffer and puts them in files in the Low Message 

Queue. Using eventcounts, the Output Queue Manager tells the 

Trusted Guard Downgrade Function that the Low Message 

Buffer has been emptied and tells the Output Message Handler 

that a message has been added to the Low Message Queue. 

The secrecy level of “Low” and the set of integrity 

categories “ic1” and “ic2” ensure that only the Output Queue 

Manager (and the Trusted Guard Downgrade Function) can 

read from the Low Message Buffer. The integrity categories of 

“ic1”, “ic2”, and “ic3” ensure that only the Output Queue 

Manager (and the Output Message Handler) can write to the 

Low Message Queue. 

Clients on the Low network can retrieve “Low” files 

containing sanitized data from the AVG system via an NFS-

mounted directory. The NFS file transfer is accomplished by 

the single-level Output Message Handler. 

D. Pre- and Post-processing Ability 

An important advantage of the assured pipeline architecture 

is the ability to add pre-processing and post-processing steps. 

By using additional integrity categories, additional pipelines 

can be added to the guard. An example of a pre-processing 

step is verification of a digital signature on the data. An 

example post-processing step could be an anti-virus scan. 

V. AVG PRINCIPLES OF OPERATION 

The AVG architecture described in section IV is designed to 

address all four of the limitations of current guard technology 

described in section II: susceptibility to software subversion, 

constraints on transfer security policies, inflexible certification 

and accreditation, and replication of resources. 

A. Substantially address software subversion 

As described in section III, the GEMSOS TCB on which the 

AVG is built meets TCSEC Class A1 standards for high-

assurance, including formal analysis, configuration 

management and trusted distribution. Cryptographic 

checksums and other mechanisms are used to protect system, 

application, and data files from corruption and tampering. 

Section III identifies these and other high-assurance features 

that help assure the integrity of the system throughout its life-

cycle, from design and development to distribution and 

operation, and significantly mitigate the threat of supply-chain 

subversion of the trusted system and application software. 

B. Modular but confined transfer security policies 

Unlike current guard technology, which lacks a high-

assurance basis to ensure limits on the range of trust for a 

guard, MAC enforcement by the GEMSOS TCB provides 

verifiable assurance in the AVG that the range of trust of the 

guard cannot be circumvented. Specifically, as described in 

Section III, each subject has two access labels – a maximum 

read label and a minimum write label.  Subjects whose read 

and write labels are not equal are multi-level and trusted to 

transfer information within the range defined by the read and 

write labels. The transfer of information from a source domain 

to a different destination domain can only be accomplished by 

such a trusted subject. GEMSOS ensures that a multi-level 

subject cannot exceed its defined range. 

Moreover, the policy implemented by the guard is modular, 

and additional pre- and post-processing modules can easily be 

added simply by using additional integrity categories to 

implement assured pipelines. The pipelines ensure that the 

modules are organized as a hierarchy, so that no step can be 

skipped. Current guard technology is not designed to compose 

multiple, modular policies of this type in a systematic, 

scientifically sound manner, but the AVG, built on a high-

assurance TCB, is. 

Consider, for example, an AVG system with a single 

module. The guard policy is a hierarchical extension to the 

mandatory security policy enforced by GEMSOS because the 

trusted guard can only enforce its policy on objects where the 

TCB has previously enforced its own policy. The policy 

enforced by the entire system is, therefore, a composition of 

the TCB MAC policy, which permits trusted subjects, and the 

downgrade policy implemented by the trusted subject guard. 

The TCB and guard each enforce a subset of the overall 

system security policy. A technique called “TCB Subsets” can 

be used to validate the correct composition of hierarchical 

components like the AVG and the TCB on which it runs [21]. 

The conditions under which a compositional evaluation using 

TCB subsets can be performed include clear identification of, 

and policy allocation between, the subsets and a definite 

hierarchical relationship between the subsets. An additional 

requirement is to demonstrate that the guard subset is 

protected from tampering by other subjects running on the 

TCB [21]. All of these conditions are met in the AVG 

architecture. This compositional evaluation process can be 

extended for an arbitrary number of additional modules 

connected via assured pipelines, leveraging composability to 

simplify certification and accreditation.  

A TCB “partition” is a TCB subset that does not depend 

hierarchically on another TCB subset. For example, a set of 

unrelated guards hosted on the same AVG system implement 

an overall system policy, but those policies are not 

hierarchical. Instead, each guard enforces a partition of the 

overall policy. Similarly, a network of guards that run on 

different AVG systems but that are pipelined in some fashion 

are also not hierarchically related because they do not share a 

defined subset of subjects, objects, and hardware. Although 



their policies cannot be composed using the technique of TCB 

Subsets, “Partitioned TCB” composition can be used [23]. 

C. Incremental evaluation 

It is an intrinsic property of high-to-low transfer that the 

MLS-enforcing TCB alone cannot provide assurance of the 

transfer security. A guard process must be a trusted subject 

that is, by definition, “trusted” with the capability to perform 

downgrades not otherwise permitted by the security policy. To 

assure overall system security, a guard trusted subject must be 

certified (and accredited) in the context of the overall system.  

The TCB subsets evaluation approach, however, can 

dramatically constrain the scope of the system certification and 

accreditation effort and enable controlled and rapid upgrades 

in response to dynamic operational environments. Because the 

system consists of well-defined subsets, each subset can be 

examined separately, permitting incremental evaluation of the 

system. 

Incremental evaluation means that guard trusted subjects 

can be added and modified, requiring evaluation only of the 

new or modified trusted subjects and without the need to 

reevaluate the entire system.  

The incremental evaluation capability of GEMSOS itself 

can also constrain the scope of system certification and 

accreditation that may be necessary due to future 

enhancements in the underlying TCB. Although, for example, 

the current GEMSOS implementation has refreshed 

technology (e.g., to a 32-bit TCB interface and large memory 

segments), the security foundation of the formal specification 

and model have remained inviolate. Thus, the inviolable, 

conceptually simple, overall security architecture of the AVG 

and its underlying TCB can reduce the initial as well as 

recurring certification and accreditation time and effort. 

D. Secure hardware sharing and extension 

The GTNP Final Evaluation Report prepared by NSA 

explicitly notes GEMSOS’s ability to support “a virtual 

machine on top of the Virtual Machine Monitor provided by 

the GTNP” [25]. The AVG leverages this feature to implement 

guards. 

Unlike guards built on low-assurance platforms, the high-

assurance platform on which the AVG is built provides 

verifiable isolation within a single multi-domain system to 

allow the AVG to support multiple “virtual” guards running 

simultaneously within the same system. The non--bypassable, 

assured transaction pipelines used in the AVG insure that the 

trusted guards will be invoked and prevent them from 

interfering with one another. The guards are not restricted to 

the same transfer security policy and domains, but may support 

different transfer security policies, between multiple domains, 

with confidence that each guard is properly isolated and 

protected. 

GEMSOS, moreover, is a multi-processing operating system 

and supports a scalable processing capability to provide 

additional computing capacity in resource-intensive 

environments. This expandability can reduce the number of 

systems needed for a given workload. Combined with the 

guard virtualization capability, the scalability makes the AVG 

suitable for use in multi-domain environments and sharply 

reduces or eliminates the need for redundant and duplicative 

resources. 

VI. GUARD VIRTUALIZATION 

The design presented in section IV is for the one-way 

transfer of data for a single transfer security policy. This is 

somewhat typical of current guard implementations. Each 

instance of a guard is hosted on its own (often dedicated) 

platform. The AVG architecture, however, virtualizes this 

guard host environment, which allows the AVG to support 

multiple instances of isolated and independent guards on the 

same platform. This virtualization depends only on the 

GEMSOS TCB, without introducing the serious risks and 

limitations of using a general-purpose, low-assurance, 

commodity, virtual machine monitor. 

A. Hosting Multiple Virtual Guard Services  

In figure 1, two network connections are shown: one for 

“High” network clients and one for “Low” network clients, and 

there is only one guard service for transfer between the two 

separate network interfaces for high and low clients. End-to-

end control of the data transfer, including any pre- and post-

processing for a particular guard, is implemented using the 

guard identifier integrity category, two other integrity 

categories for implementing the assured pipelines, and the 

MAC policy enforced by the underlying GEMSOS TCB.  

GEMSOS has available a large number of independent 

integrity categories, so another, completely isolated and 

protected guard can be created by using a different guard 

identifier integrity category, along with the same two assured 

pipeline categories, in the same way as shown in figure 1. The 

new guard created using the different guard identifier category 

creates a separate and distinct virtual guard service. Multiple 

guard services created in this way can run on the same 

platform at the same time, each supporting an independent 

transfer security policy. The virtual guard services can 

potentially support different data flows between any paired 

combinations of the same or different domains. 

B. Virtual Guard Service over Shared Network Interface 

Additional physical network interfaces can be used to 

provide network connections between new guard instances and 

their high and low clients (which may be in security domains 

different from other instances). Separate physical network 

interfaces can help keep the domains separate. Guard 

virtualization supported by the AVG, however, does not 

require a separate network interface per domain. Another type 

of guard can be used to encrypt, seal, and forward packets 

from different domains to create virtual networks, securely 

multiplexing multiple access domains on the same network. 

Consider, for example, the network depicted in figure 2. A 

“system high” network connects Internet or other untrusted 

sources to lower-domain hosts at the same time as it carries 



high-domain data. Stand-alone crypto-seal guard appliances, 

called “GemSeal” guards [37], sit on the network in front of all 

low-domain hosts and bridges to the Internet and other low-

domain networks.  

The GemSeal guards, which are themselves built on 

GEMSOS, seal packets with their source label and forward 

them over the system high network. The seals protect the 

integrity of the labels and data. Unlabeled or altered packets 

cannot enter a guarded destination because they will not have a 

crypto seal that binds a label to a matching destination label, 

preventing high-domain data from being released to low-

domain hosts.   

The TCSEC requires that “Sensitivity labels shall accurately 

represent security levels of the specific … objects with which 

they are associated. When exported by the TCB, sensitivity 

labels shall accurately and unambiguously represent the 

internal labels and shall be associated with the information 

being exported [27].” GEMSOS uses crypto seals internal to 

its TCB to protect the label and data integrity of non-volatile 

storage. GemSeal applies this same crypto seal concept to 

network packets to ensure that packet data is not altered and 

that the source sensitivity label is authentic. 

We can generalize the GemSeal architecture shown in figure 

2 to support multiple domains – not just the two in the figure – 

by putting GemSeal guards in front of every host of every 

domain. The guards would forward labeled and encrypted 

packets across the shared network to a guard at the destination. 

Destination guards validate the data and label of each packet 

against the destination label before releasing it. In effect, 

GemSeal guards would implement VPN tunneling with a 

different tunnel for every domain pair. 

The next step is to put the GemSeal appliance into an AVG 

system instead of having it as a separate appliance. The 

GemSeal would run as a higher-integrity subject than the 

transfer guard applications and would be part of the AVG 

TCB. The internal GemSeal could reliably determine the 

access domain of each message from the message’s sealed 

label and place the message into the correct assured pipeline 

for trusted downgrade using the applicable virtual guard 

service. 

A deployed application with significant similarities to the 

GemSeal concept is the NSA Class A1 BLACKER project to 

implement host-to-host secure communications across the 

Defense Data Network. BLACKER supports “eight security 

labels, from Unclassified to Top Secret” for messages. 

BLACKER used the GEMSOS kernel for key management 

and distribution, and for the access control center which “is the 

‘brains’ of the system [26].” GemSeal has also been proposed 

for use in securing critical infrastructure networks [38]. 

VII. CONCLUSION 

The raison d'être for a guard is to enhance the information 

security of system. The limited assurance of current guard 

technology, however, can have the opposite effect, by 

introducing serious vulnerabilities to subversion and by 

necessary deployment restrictions as a result of a lack of trust 

in the guard systems. The AVG architecture substantially 

mitigates those risks by leveraging the mature and proven 

GEMSOS TCB designed to meet the Class A1 requirements.  

The AVG, furthermore, uses the proven policy composition 

tools of TCB subsets and TCB partitions to enable secure and 

systematically repeatable incremental evaluation. When 

applied effectively, such composition approaches can 

dramatically reduce the time and effort required for, and 
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increase confidence in, certification and accreditation efforts. 

The benefits of incremental evaluation would be especially 

valuable in dynamically changing environments, such as those 

faced in military deployments, where frequent recertification 

may be necessary as the system is modified in the face of a 

rapidly evolving adversary. 

Beyond those considerations for insuring adequate security, 

guard virtualization enables more effective use of resources. 

Not only can this reduce costs, it can also reduce the space, 

weight, and power footprint that may be even more important 

in aircraft and space deployments.  
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